INTERNATIONAL A LEVEL

Pure Mathematics 2

Solution Bank

Exercise 5E

1 a i r = 0.1 so the series is convergent as |r| < 1

ii
$$S_{\infty} = \frac{1}{1 - 0.1} = \frac{10}{9}$$

- **b** r = 2 so the series is not convergent as $|r| \ge 1$.
- **c** i r = -0.5 so the series is convergent as |r| < 1.

ii
$$S_{\infty} = \frac{10}{1+0.5} = \frac{20}{3} = 6\frac{2}{3}$$

- **d** This is an arithmetic series and so does not converge.
- e r = 1 so the series is not convergent as $|r| \ge 1$.
- **f** i $r = \frac{1}{3}$ so the series is convergent as |r| < 1

ii
$$S_{\infty} = \frac{3}{1 - \frac{1}{3}} = \frac{9}{2} = 4\frac{1}{2}$$

- **g** This is an arithmetic series and so does not converge.
- h i r = 0.9 so the series is convergent as |r| < 1. ii $S_{\infty} = \frac{9}{1 - 0.9} = 90$

$$a = 10, S_{\infty} = 30$$
$$\frac{10}{1-r} = 30$$
$$10 = 30(1-r)$$
$$30r = 20$$
$$r = \frac{2}{3}$$

2

3
$$a = -5, S_{\infty} = -3$$

 $\frac{-5}{1-r} = -3$
 $-5 = -3(1-r)$
 $3r = -2$
 $r = -\frac{2}{3}$
4 $S_{\infty} = 60, r = \frac{2}{3}$
 $\frac{a}{1-\frac{2}{3}} = 60$
 $\frac{a}{\frac{1}{3}} = 60$
 $a = 20$
5 $S_{\infty} = 10, r = -\frac{1}{3}$
 $\frac{a}{1+\frac{1}{3}} = 10$
 $\frac{a}{\frac{4}{3}} = 10$
 $a = \frac{40}{3} = 13\frac{1}{3}$

This is an infinite geometric series:

$$a = \frac{23}{100} \text{ and } r = \frac{1}{100}.$$

Use $S_{\infty} = \frac{a}{1-r}.$
 $0.\dot{2}\dot{3}... = \frac{\frac{23}{100}}{1-\frac{1}{100}} = \frac{\frac{23}{100}}{\frac{99}{100}}$
 $= \frac{23}{100} \times \frac{100}{99} = \frac{23}{99}$

Pure Mathematics 2

7
$$S_3 = 9, S_{\infty} = 8$$

 $S_3 = \frac{a(1-r^3)}{1-r} = 9$ (1)
 $S_{\infty} = \frac{a}{1-r} = 8$ (2)
 $8(1-r^3) = 9$ (substituting (2) into (1))
 $1-r^3 = \frac{9}{8}$
 $r^3 = -\frac{1}{8}$
 $r = -\frac{1}{2}$
 $a = 8\left(1+\frac{1}{2}\right)$ (from (2))
 $a = 12$

8 **a** a = 1, r = -2xAs the series is convergent, |-2x| < 1If x < 0 then 2x < 1, so $x < \frac{1}{2}$; if x > 0 then -2x < 1, so $x > -\frac{1}{2}$ Hence, $-\frac{1}{2} < x < \frac{1}{2}$. **b** $S_{\infty} = \frac{1}{1+2x}$ 9 **a** $a = 2, S_{\infty} = 16 \times S_{3}$ $S_{3} = \frac{2(1-r^{3})}{1-r}$ $16 \times \frac{2(1-r^{3})}{1-r} = \frac{2}{1-r}$

$$1-r = 1-7$$

$$32(1-r^{3}) = 2$$

$$r^{3} = \frac{15}{16}$$

$$r = 0.9787$$

b $u_4 = ar^3 = 2 \times 0.9787^3 = 1.875$

Solution Bank

 $64r^2 - 64r + 15 = 0$

🕐 Pearson

Pure Mathematics 2

11 b (8r-3)(8r-5) = 0 $r = \frac{3}{8} \text{ or } r = \frac{5}{8}$ c When $r = \frac{3}{8}$ $a = 8\left(1 - \frac{3}{8}\right) = 5$ When $r = \frac{5}{8}$ $a = 8\left(1 - \frac{5}{8}\right) = 3$ d $r = \frac{3}{8}$ If $S_n = \frac{5\left(1 - \left(\frac{3}{8}\right)^n\right)}{1 - \frac{3}{8}} = 7.99$ $\frac{5\left(1 - \left(\frac{3}{8}\right)^n\right)}{\frac{5}{8}} = 7.99$ $1 - 0.375^n = 0.99875$

 $0.375^{n} = 0.00125$ $n = \frac{\log 0.00125}{\log 0.375}$

n = 6.815n = 7

Solution Bank

Challenge

a First series $a + ar + ar^2 + ar^3 + ...$ Second series $a^2 + a^2r^2 + a^2r^4 + a^2r^6 + ...$ The second series is geometric with common ratio is r^2 and first term a^2 .

b
$$\frac{a}{1-r} = 7 \Rightarrow a = 7(1-r) \Rightarrow a^2 = 49(1-r)^2$$

 $\frac{a^2}{1-r^2} = 35 \Rightarrow \frac{49(1-r)^2}{(1+r)(1-r)} = 35$
 $49(1-r) = 35(1+r)$
 $49-49r = 35+35r$
 $84r = 14$
 $r = \frac{1}{6}$