Pure Mathematics 2

Exercise 5E

1 a i $r=0.1$ so the series is convergent as

$$
|r|<1
$$

ii $\quad S_{\infty}=\frac{1}{1-0.1}=\frac{10}{9}$
b $\quad r=2$ so the series is not convergent as $|r| \geqslant 1$.
c i $r=-0.5$ so the series is convergent as $|r|<1$.
ii $S_{\infty}=\frac{10}{1+0.5}=\frac{20}{3}=6 \frac{2}{3}$
d This is an arithmetic series and so does not converge.
e $\quad r=1$ so the series is not convergent as $|r| \geqslant 1$.
f i $\quad r=\frac{1}{3}$ so the series is convergent as

$$
|r|<1
$$

ii $\quad S_{\infty}=\frac{3}{1-\frac{1}{3}}=\frac{9}{2}=4 \frac{1}{2}$
g This is an arithmetic series and so does not converge.
h i $r=0.9$ so the series is convergent as

$$
|r|<1
$$

ii $S_{\infty}=\frac{9}{1-0.9}=90$
$2 a=10, S_{\infty}=30$

$$
\begin{aligned}
\frac{10}{1-r} & =30 \\
10 & =30(1-r) \\
30 r & =20 \\
r & =\frac{2}{3}
\end{aligned}
$$

$3 a=-5, S_{\infty}=-3$

$$
\begin{aligned}
& \frac{-5}{1-r}=-3 \\
& -5=-3(1-r) \\
& 3 r=-2 \\
& r=-\frac{2}{3}
\end{aligned}
$$

$4 S_{\infty}=60, r=\frac{2}{3}$

$$
\begin{aligned}
\frac{a}{1-\frac{2}{3}} & =60 \\
\frac{a}{\frac{1}{3}} & =60 \\
a & =20
\end{aligned}
$$

$5 S_{\infty}=10, r=-\frac{1}{3}$

$$
\begin{aligned}
\frac{a}{1+\frac{1}{3}} & =10 \\
\frac{a}{\frac{a}{3}} & =10 \\
a & =\frac{40}{3}=13 \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
60 . \dot{2} \ldots=\frac{23}{100} & +\frac{23}{10000}+\frac{23}{1000000}+\ldots \\
& \times \frac{1}{100} \quad \times \frac{1}{100}
\end{aligned}
$$

This is an infinite geometric series:
$a=\frac{23}{100}$ and $r=\frac{1}{100}$.
Use $S_{\infty}=\frac{a}{1-r}$.

$$
\begin{aligned}
0 . \dot{2} \dot{3} \ldots & =\frac{\frac{23}{100}}{1-\frac{1}{100}}=\frac{\frac{23}{100}}{\frac{99}{100}} \\
& =\frac{23}{100} \times \frac{100}{99}=\frac{23}{99}
\end{aligned}
$$

Pure Mathematics 2

$7 S_{3}=9, S_{\infty}=8$
$S_{3}=\frac{a\left(1-r^{3}\right)}{1-r}=9$
(1)
$S_{\infty}=\frac{a}{1-r}=8$
$8\left(1-r^{3}\right)=9$ (substituting (2) into (1))
$1-r^{3}=\frac{9}{8}$
$r^{3}=-\frac{1}{8}$
$r=-\frac{1}{2}$
$a=8\left(1+\frac{1}{2}\right)($ from (2))
$a=12$
8 a $a=1, r=-2 x$
As the series is convergent, $|-2 x|<1$
If $x<0$ then $2 x<1$, so $x<\frac{1}{2}$;
if $x>0$ then $-2 \mathrm{x}<1$, so $x>-\frac{1}{2}$
Hence, $-\frac{1}{2}<x<\frac{1}{2}$.
b $\quad S_{\infty}=\frac{1}{1+2 x}$
9 a $a=2, S_{\infty}=16 \times S_{3}$
$S_{3}=\frac{2\left(1-r^{3}\right)}{1-r}$
$16 \times \frac{2\left(1-r^{3}\right)}{1-r}=\frac{2}{1-r}$
$32\left(1-r^{3}\right)=2$
$r^{3}=\frac{15}{16}$
$r=0.9787$
b $u_{4}=a r^{3}=2 \times 0.9787^{3}=1.875$

10 a $a=30, S_{\infty}=240$

$$
\begin{aligned}
\frac{30}{1-r} & =240 \\
\frac{1}{8} & =1-r \\
r & =\frac{7}{8}
\end{aligned}
$$

b $u_{4}-u_{5}=a r^{3}-a r^{4}$

$$
=30\left(\frac{7}{8}\right)^{3}-30\left(\frac{7}{8}\right)^{4}
$$

$$
=2.51
$$

c $S_{4}=\frac{30\left(1-\left(\frac{7}{8}\right)^{4}\right)}{1-\frac{7}{8}}$
$=99.3$
d If $S_{n}=\frac{30\left(1-\left(\frac{7}{8}\right)^{n}\right)}{1-\frac{7}{8}}=180$

$$
\begin{aligned}
& 1-\left(\frac{7}{8}\right)^{n}=0.75 \\
& 0.875^{n}=0.25 \\
& n=\frac{\log 0.25}{\log 0.875} \\
& n=10.38 \\
& n=11
\end{aligned}
$$

11 a $a r=\frac{15}{8}, S_{\infty}=8$

$$
\begin{aligned}
& \frac{a}{1-r}=8 \\
& a=8(1-r) \\
& a=\frac{15}{8 r} \\
& \frac{15}{8 r}=8(1-r) \\
& 15=64 r-64 r^{2} \\
& 64 r^{2}-64 r+15=0
\end{aligned}
$$

Pure Mathematics 2

Challenge

a First series $a+a r+a r^{2}+a r^{3}+\ldots$ Second series $a^{2}+a^{2} r^{2}+a^{2} r^{4}+a^{2} r^{6}+\ldots$ The second series is geometric with common ratio is r^{2} and first term a^{2}.

$$
\begin{aligned}
& \text { b } \frac{a}{1-r}=7 \Rightarrow a=7(1-r) \Rightarrow a^{2}=49(1-r)^{2} \\
& \frac{a^{2}}{1-r^{2}}=35 \Rightarrow \frac{49(1-r)^{2}}{(1+r)(1-r)}=35 \\
& 49(1-r)=35(1+r) \\
& 49-49 r=35+35 r \\
& 84 r=14 \\
& r=\frac{1}{6}
\end{aligned}
$$

